J. - CI79C 599K

3A0

rt

THE ASTROPHYSICAL JOURNAL, 179:599-606, 1973 January 15
© 1973. The American Astronomical Society. All rights reserved. Printed in U.S.A.

ELECTRICAL AND THERMAL CONDUCTIVITIES OF A
RELATIVISTIC DEGENERATE PLASMA

Don C. KELLY*
Institute for Space Studies, Goddard Space Flight Center, NASA, New York, New York 10025
Receéived 1971 May 3; revised 1972 August 14

ABSTRACT

The electrical and thermal conductivities are calculated for an electron-proton plasma. The
electron distribution function is obtained by solving the Boltzmann equation for a plasma in which
the electrons are relativistic and degenerate while the protons are degenerate but nonrelativistic.
Such conditions are expected to prevail in neutron-star interiors. The conductivities are increased
by factors of order 10° over the values obtained when the protons are nondegenerate. The expres-
sion obtained for the electrical conductivity differs by a factor 3/4 from the result of a variational
calculation by Baym, Pethick, and Pines.

Subject headings: neutron stars — plasmas — relativity

I. INTRODUCTION

The transport properties of a plasma are strongly influenced by particle degeneracy
(Kothari 1932a, b; Marshak 1940; Lee 1950; Mestel 1950; Singwi and Sundaresan
1950; Schatzman 1958; Chiu 1968). At sufficiently high number densities fermion
degeneracy results in a relativistic distribution of momenta. The bulk of the charged
matter in a neutron-star interior probably comprises an electron-proton plasma in
which the electrons are relativistic and degenerate while the protons are degenerate but
nonrelativistic (Langer ez al. 1969; Cameron 1970). The electron-proton degeneracy
greatly inhibits Coulomb collisions. The electrical and thermal conductivities—
quantities which are inversely proportional to the collision frequency—exhibit corres-
ponding increases.

We consider a degenerate plasma of relativistic electrons and nonrelativistic protons
subject to constant magnetic and electric fields and a temperature gradient. The actions
of the intense magnetic field (Canuto 1970; Canuto and Solinger 1970; Chiu and
Canuto 1970) associated with a neutron star render the plasma anisotropic. In par-
ticular, the magnetic field virtually eliminates heat flow perpendicular to the field lines.
In spite of the enormous field strength, the electron Fermi energy is much larger than
the magnetic quantum of energy. Magnetic quantum effects are therefore minor.
Under these conditions it is well known that the transport properties parallel to the
magnetic field are independent of the field strength (Kahn and Frederiske 1959). By
ignoring the magnetic field term in the Boltzmann equation we obtain scalar transport
coefficients. In a more complete analysis these coefficients would appear as diagonal
elements of the conductivity tensors.

II. EVALUATION OF TRANSPORT COEFFICIENTS

The theory of thermoelectric phenomena (Sommerfeld 1956) relates the heat flux
Q. and current density J, to the temperature gradient 07/0x and the applied electric
field E,,
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The quantity i is related to the usual electron chemical potential p, by u. = ey, where
—e is the electron charge. With this definition, — &/0x becomes the electric field set
up by a gradient in the chemical potential. K is the thermal conductivity, and o is the
electrical conductivity.

The steady-state momentum distribution function for the electrons is assumed to
have the form

S(p) = fole) + £2(P)

where fy(¢) is the Fermi-Dirac distribution, and f;(p) embodies the distorting effects
of the field and temperature gradient,

fole) = {exp [Ble — po)] + 1377,

e is the total electron energy, and B = 1/kT.
The kinetic expressions for J, and Q, are

T, = 20h) % [ v.fid%p, 1)

0, = 2(2nh)-2 f e fid%p . @)

The form of f1(p) follows from the steady-state version of the relativistic Boltzmann
equation,

C(f) =v-Vf+ eE-V,f,

in which C(f) denotes the collisional rate of exchange of /. In the case at hand C(f)
is the rate at which f changes through electron-proton collisions.? The evaluation of
C(f) is expressed most elegantly in terms of the dynamic form factor, S(x, w) (Pines
and Nozieres 1966; Baym 1964). The dynamic form factor measures the phase space
available to a proton which scatters an electron and recoils, absorbing momentum
fix and energy #w. The steady-state Boltzmann equation becomes

Uy = B () 5 + e = et ottt ~ - 9

The details of the evaluation of C(f;) are sketched in the Appendix. The collision term
reduces to the familiar relaxation form

C(f) = —v1, “@
which yields
. ﬁ € — e QT_-' Oke _ _ .
fl - _-I: T 8x + ax eEx Uxfo(l fo) . (5)
The collision frequency v is given by
2k +©
R i e S(k, w)dw
"7 2nc?pt L=o Ul f_m P+ 17 ©

where U, is the Fourier transform of the shielded Coulomb potential. The upper limit

1 As noted later, the effect of electron-electron and electron-muon collisions may be ignored.
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on the « integration is 2«y, where «y is the Fermi wavenumber. For degenerate protons
the dynamic form factor is (see Appendix)

M?2 fiw
S(K, w) = 2B (1 _ e—ﬁnm) ’ (7)
where M is the proton mass. |U,|2 is given by

_ (4re®)’(1 — 3x®/xe)
|U’C|2 - (Kz + KFT2)2 ’ (8)

where «pp is the Fermi-Thomas wavenumber and is related to the density of states, g,
at the Fermi surface by

kpg® = dme?[g (i) + gp(f"p)] . (9a)

For relativistic electrons (u, > mc?), the shielding is due primarily to the protons,?
wkpr® 2 dme’gy(p,) = 6mNe?[u, , (9b)
where p, is the proton chemical potential
2
o = A (BrANYS,

and N is the proton number density. For conditions appropriate to a neutron-star
interior, xpp?/kp? < 1. Evaluation of the integrals in equation (6) gives, to lowest
Order in KFT/KF,

~ 5 7)o o e a0

The integrals for J,, and Q. are evaluated with the aid of Sonﬁmerfeld’s theorem. The
electrical conductivity emerges as
o = Neé’ct/fixy , (11)

where N is the electron number density and = is an appropriately defined mean free
time

_ 4KFT hZKFz 2
T ke (okaT ’ (12)
Baym, Pethick, and Pines (1969) employed a variational method to obtain a lower

bound for = which is three-quarters of the value given by equation (12).
The thermal conductivity may be identified as

. Nkch 1012 - 112
K = hKF T( Io 1 (13)
where I, is an integral over the Fermi-Dirac distribution:
- A . =z |,
I, —f fo(Z)dZdz [Z G? = 2,92
z = ¢/kT; Zo = pe/kT; z, = mc?/kT. (14)

2 The ratio g./g, is equal to u./Mc?. For typical neutron-star conditions, g./g, ~ 1/16.
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In the relativistic degenerate limit

Iy ~ 1 + 27222, I ~ 1 4+ 10n?%/3zy2, I, ~ 1 + 57%/z,2;
and K becomes
_ 100% NeeT
3 fxy
Comparing equations (15) and (11) shows that the Wiedemann-Franz law holds, with

a Lorenz number
K _ 102 (k|2
7 e

For a degenerate but nonrelativistic electron gas the Lorenz number is one-tenth
as large (Ziman 1960) having the value in?%(k/e)?. Although the Lorenz number
shows only a moderate change, the proton degeneracy substantially modifies ¢ and
K. The proton degeneracy increases both ¢ and K by a factor of order (u,/kT)* over
their values for degenerate relativistic electrons colliding with nondegenerate protons.
Typical neutron-star conditions (N ~ 1037 cm~3, T'~ 108 ° K) give u, ~ 10 MeV,
kT ~ 10 keV. The proton-degeneracy enhancement of ¢ and K is therefore of order 10°.

The present formulation considers only the effects of electron-proton collisions.
With degeneracy sharply reducing the number of protons free to scatter, one is led
to consider other sources of resistivity. Electron-electron and electron-muon collisions
seem the most obvious candidates. An additional mechanism, the scattering of elec-
trons by the neutron magnetic moment, is favored by the enormous number density
of neutrons. Baym et al. (1969) have estimated that the scattering of electrons by the
neutron magnetic moment is roughly 25 times less effective than Coulomb scattering
by the protons.

Consideration of electron-electron collisions shows that they produce negligible
changes in ¢ and K. The dynamic form factor for relativistic electrons can be obtained
from equation (7) by replacing M by p./c2. For typical conditions u./Mc?* ~ 1/16.
The inclusion of electron-electron collisions would thereby modify ¢ and K by less
than 1 percent.

The muons also prove to be an ineffective source of resistivity. Over portions of the
interior where the muons are nondegenerate, their number density is too low for them
to compete with the protons as electron scatterers. In regions where their number
density reaches a respectable level the muons are degenerate, and they lose out to the
protons by virtue of the M? dependence of S(x, w).

K T. (15)

III. CONCLUSIONS

The combined effects of degeneracy and shielding reduce the mean electron-proton
collision frequency and thereby raise the electrical and thermal conductivities. The
enhancement factor is of order (u,/kT)?, which is approximately 10° for typical
neutron-star conditions.

The physical consequences of the enlarged value of o have been discussed previously
(Baym et al. 1969). The enormous thermal conductivity increases the conductive opacity
to such an extent that the degenerate interior of a neutron star will be nearly isothermal.

For convenience we express the results for o, K, and = in terms of Ngg (the electron
number density in units of 10%6 cm ~3) and T, (the temperature in units of 102 kelvins):

o= 1.6 x 1028N;¢%2%/Te%2s71; (11a)
K = 4.2 x 10%2N35%2|Tg% ergs s~* cm ™! kelvin=1; (15a)
7 = 7.4 x 107 15N3¢%5/Tg? seconds . (12a)
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APPENDIX

We sketch here the reduction of the collision integral to the form of equation (14),
and the evaluation of S(x, w) quoted in equation (7).

Consider a test electron which interacts with a many-body system of scatterers via
a scalar potential. Let (x, m) denote the initial electron (1) and scatterer (m) states and
(v, n) the final states. A straightforward application of time-dependent perturbation
theory gives the transition probability per unit time as

d 2
a2 = 23 (U2 Kl pud m)|28(Q) . (A1)

U, is the Fourier transform of the potential and p, is the Fourier transform of the
density operator of the system of scatterers (Pines and Nozieres 1966; Baym 1964).
As a result of the transition there is a transfer of momentum 7x and energy #iw from
the electron to the system of scatterers. In arriving at equation (A1) we have taken
plane-wave states for the electron. The 8-function ensures energy conservation, with

#Q =E, - E, — fiw,

where E,, and E, denote the initial and final energies of the scattering system. The
quantity given by equation (A1) is the probability per unit time of a transition from
an “occupied” initial state (u, m) into an “empty” final state (v, n). To construct a
“collision integral,” we must introduce various occupation probabilities, sum over
the final states of the test particle, and sum over the initial and final states of the
scattering system. Write

W, = probability that the initial scatterer state is occupied ;

f(p,) = f, = probability that the initial electron state is occupied .

Then, W, f.(1 — f,) is the probability that the initial state is occupied and that the
final electron state is open, and W, f,(1 — f,)d|a,,*™|?/dt is the expected rate of (r, m)
into (v, n). Summing this over all v, m, and n gives £(f,), the total rate at which the
test electron state u is depopulated:

L(f) = 2al* 2, U Knlpd |my 23 QW fu(1 — £,).

v,m,n

The mutual dependence of w and x is contained both in 8(Q2) and in the 8-function
which appears in the density of final electron states,

Z = (2nh) 73 f d°pdwdw — i~ (e, — ¢,)].

v

From the conservation of momentum, p, = p, — #ix, it follows that (for a given
p,) d°p,/h® = dx, whence

Z = (2m)~8 f dPrdwd(s)

v

with 7is = fiw — (¢, — €,).
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The dynamic form factor for the scatterers is defined as
S, ) = > Wal<n|p.|m)|?8(Q), (A2)
whereupon Z(f,) becomes

L) = Quh)-° f d3kdwd(s)|U,

2S(%, w)f;l(l - f;’) .

The ““inverse” interactions which populate the electron state of momentum p, do so
at a rate

gun=«b%r3fd%mwunafsewa—wmn-—ﬁy

The total rate of change in f(p) is evidently &(f) — Z(f), which we designate C(f):

() = (27Tﬁ)‘3fdakde(S)llez[S(—x, —o)fi(1 = f) = 86, 0)fu(1 = £)]. (A3)

By making use of the second quantized representation of py, the dynamic form factor
for a gas of noninteracting fermions may be reduced to (Pines and Nozieres 1966)

St w) = > F(P)[1 — F(P + i0)]5(Q), (A4)
P

in which F(P) is the occupation probability for a scatterer of momentum P.
One readily verifies from the principle of detailed balance [according to which C(f) = 0

when f = fo(e)],
S(—%, —w) = e F*°S(x, w) .

If next we write the perturbed portion of fi(p) as

f1(p) = p-h(e)fo(1 — fo) (A5)
then the collision integral reduces to
C(f) = (2nh)~3 f dPrdwd(s)|Ue2S(x, w)fo()[1 — fo(€)[p k() — p-h(e)]  (A6)

with ¢ = ¢ — fiw, p’ = p — #ix. The factor fo(e)[1 — fo(¢))] may be written as
e Fro — ]
SOl = ) = 5 — £ N1 + g}

where » = B(e — p.). The eventual integration over € (to obtain the transport coeffi-
cients) is dominated by the factor fy(e)[1 — fo(e)], which is sharply peaked at € = p,,
i.e., at = 0. We therefore take n = 0 in the last factor, obtaining

SO = fo(D] = Sl = Sol)] o -
Further, we write
D' h() — p-h(e) = (p' — p)-h(e) ,
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and make use of the degeneracy restrictions again to obtain

2
[ @@~ probe = —potte) [ @ GF-
P
These steps leave the collision operator in the form of equation (4), C(f;) = —vfi(p),
with
1
4m2p?

S(x, w)

f ddwd(s)| Uel® g7 -

y =

(A7)

The integration over the 3-function is performed by letting p define the z-axis for the
d3k integration. Writing

d®c = k?dk sin Odﬁdtﬁ

and noting
(¢)? = € + (fic)® — 2hpc® cos 0
and
1
f BLI0) — Sl = rorr—
produces

f sin 0405(s) =~ —=—=»

and leaves the desired form of the collision frequency »:

€ r * dwS(x,
= goas | U [ Gt ©

To convert the expression for S(x, w) given by equation (A4) into the result quoted
in equation (7), the é-function is first removed by an integration over the polar angle.
This gives

S0t @) = 57575 f EPAPF(E)[1 — F(E + fiw)].

For scatterers which are degenerate but nonrelativistic fermions of mass M this
becomes

1
2h3c2K}8J‘ e77+ 1 e -n-Bhiw + 1
o = UM (wfi)? — pl.

The familiar degeneracy condition is fu > 1 which translates into the following
numerical constraint on N;, the number density of the scatterers:

N, > 3 x 10%2(M,/M)*2T%2 cm~3 (A3)

S(x, w) =

where M is the proton mass.
In arriving at the form of S(x, w) given below (eq. [7]) we take n, = —o0; hence,
it is also necessary to satisfy

IM (o < p
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for the important ranges of w and «. Taking w = kT/# and k = kg leads to
Ny > 3 x 1033 (M /M)T? cm~—3 . (A9)

Under conditions envisioned for neutron-star interiors, both equations (A8) and (A9)
are amply satisfied for protons and muons. The M? dependence of S(x, w), and thus v,
permits electron-muon scattering to be ignored in favor of electron-proton scattering.
Taking n, = —oo0 and noting

j*‘” 1 1 Bhiw

dn —— = —
w €+ le "B L] ] — g

results in
M2 fiw

S(x, w) = 203k 1 — e BP0

(A10)

With M, = M, equation (A10) reduces to the result quoted in equation (7). In the
case where the fermions are degenerate and relativistic the dynamic form factor is
given by equation (A10) with M2 replaced by (u/c?)?, where p is the chemical potential.
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